The approximate Euler method for Lévy driven stochastic differential equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The approximate Euler method for Lévy driven stochastic differential equations

This paper is concerned with the numerical approximation of the expected value IE(g(Xt)), where g is a suitable test function and X is the solution of a stochastic differential equation driven by a Lévy process Y . More precisely we consider an Euler scheme or an “approximate” Euler scheme with stepsize 1/n, giving rise to a simulable variable Xn t , and we study the error δn(g) = IE(g(X n t ))...

متن کامل

An Euler-Poisson scheme for Lévy driven stochastic differential equations

We describe an Euler scheme to approximate solutions of Lévy driven stochastic differential equations (SDEs) where the grid points are given by the arrival times of a Poisson process and thus are random. This result extends the previous work of FerreiroCastilla et al. (2014). We provide a complete numerical analysis of the algorithm to approximate the terminal value of the SDE and prove that th...

متن کامل

The Euler Scheme for Lévy Driven Stochastic Differential Equations : Limit Theorems

We study the Euler scheme for a stochastic differential equation driven by a Lévy process Y . More precisely, we look at the asymptotic behavior of the normalized error process un(X −X), where X is the true solution and X is its Euler approximation with stepsize 1/n, and un is an appropriate rate going to infinity: if the normalized error processes converge, or are at least tight, we say that t...

متن کامل

Optimal simulation schemes for Lévy driven stochastic differential equations

We consider a general class of high order weak approximation schemes for stochastic differential equations driven by Lévy processes with infinite activity. These schemes combine a compound Poisson approximation for the jump part of the Lévy process with a high order scheme for the Brownian driven component, applied between the jump times. The overall approximation is analyzed using a stochastic...

متن کامل

The Euler Scheme for Levy Driven Stochastic Differential Equations∗

In relation with Monte-Carlo methods to solve some integro-differential equations, we study the approximation problem of IEg(XT ) by IEg(X̄n T ), where (Xt, 0 ≤ t ≤ T ) is the solution of a stochastic differential equation governed by a Lévy process (Zt), (X̄n t ) is defined by the Euler discretization scheme with step Tn . With appropriate assumptions on g(·), we show that the error IEg(XT ) − I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Henri Poincare (B) Probability and Statistics

سال: 2005

ISSN: 0246-0203

DOI: 10.1016/j.anihpb.2004.01.007